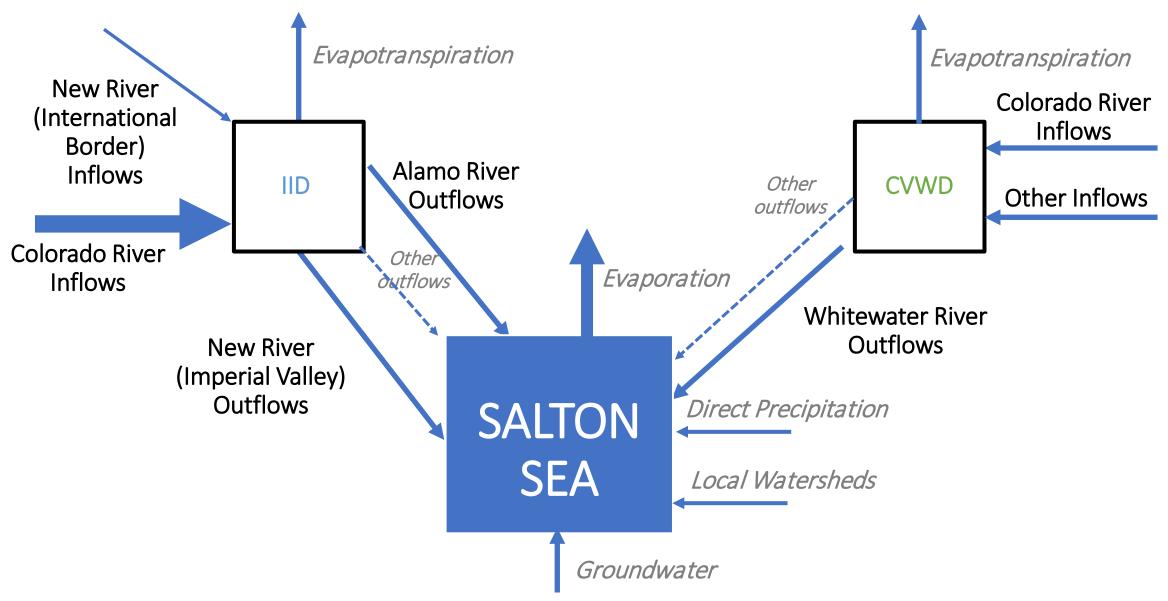
Considerations in Projecting Future Hydrology Scenarios for the Salton Sea

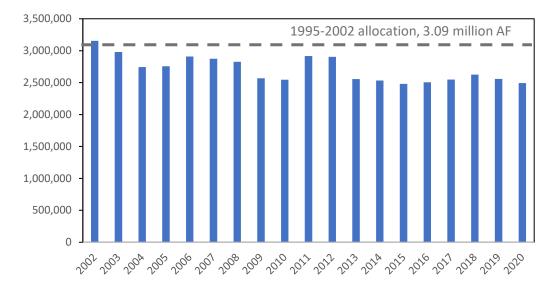

Sujoy B. Roy Tetra Tech Inc. Presentation at the Salton Sea Summit April 6, 2022, Palm Desert, California

Overview

- Habitat and dust suppression projects, and long-range projects, such as those planned for the Salton Sea Management Program, require assessments of water availability
- We used recent observed data on inflows to the Sea, combined with elevation and salinity data, to update the current water balance
- We used this understanding to develop scenarios of future inflows based on
 - Continuing conditions
 - Climate change and increased evapotranspiration
 - Effect of drought periods
 - Previously published IID scenarios (2018, embedded in SALSA model)
 - More extreme climate conditions

IMPERIAL IRRIGATION DISTRICT

COACHELLA VALLEY WATER DISTRICT



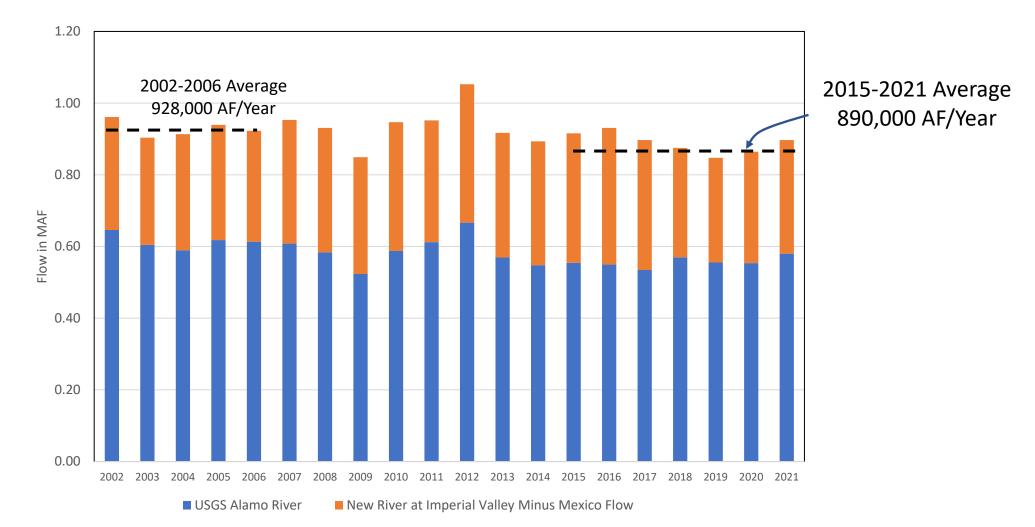
Historical Colorado River Flows to IID and CVWD


1995 – 2002 average is the pre-QSA allocation

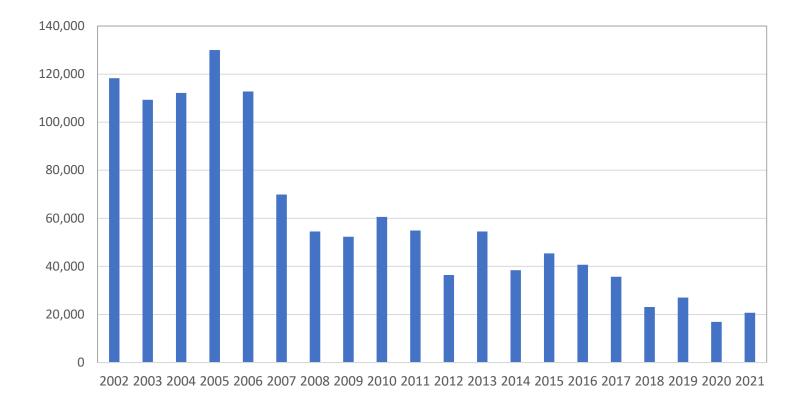
- IID allocations have decreased in the last two decades, following QSA
- CVWD allocations have been steady and have increased in the last five years

USBR Colorado River Flow to IID, AF

USBR Colorado River Flow to CVWD, AF


(SOURCE: USBR Water Accounting Reports)

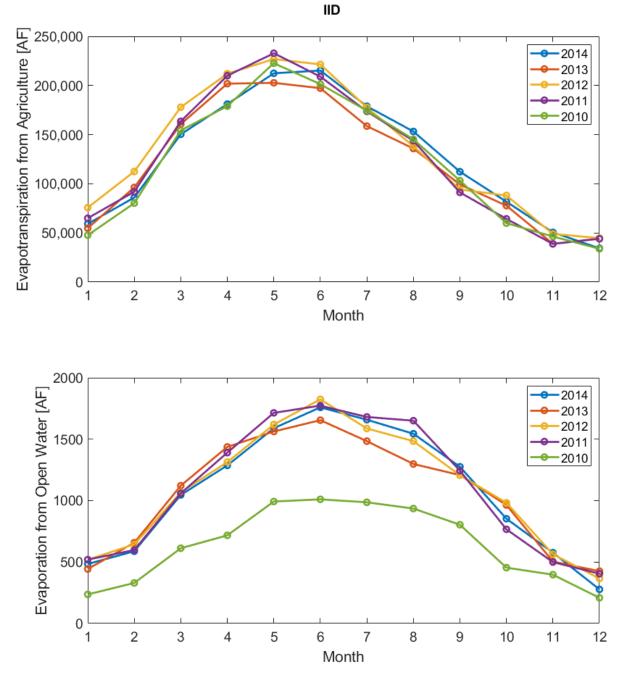
QSA Transfers and Mitigation Water


Year	SDCWA Transfer	CVWD Transfer	Salton Sea Mitigation Water created by fallowing		
2003	3,445	0	0		
2004	20,000	0	30,239		
2005	30,000	0	21,476		
2006	40,000	0	0		
2007	50,000	0	23,306		
2008	50,000	4,000	26,085		
2009	60,000	8,000	30,158		
2010	70,000	12,000	80,282		
2011	63,278	16,000	0		
2012	106,722	21,000	15,110		
2013	100,000	26,000	71,470		
2014	100,000	31,000	90,000		
2015	100,000	36,000	110,000		
2016	100,000	41,000	130,000		
2017	100,000	45,000	150,000		
2018	130,000	63,000	0		
2019	160,000	68,000	0		
2020	190,000	73,000	0		
2021	200,000	78,000	0		
2022	200,000	83,000	0		
2023	200,000	88,000	0		
2024	200,000	93,000	0		
2025	200,000	98,000	0		
2026-2047	200,000	103,000	0		

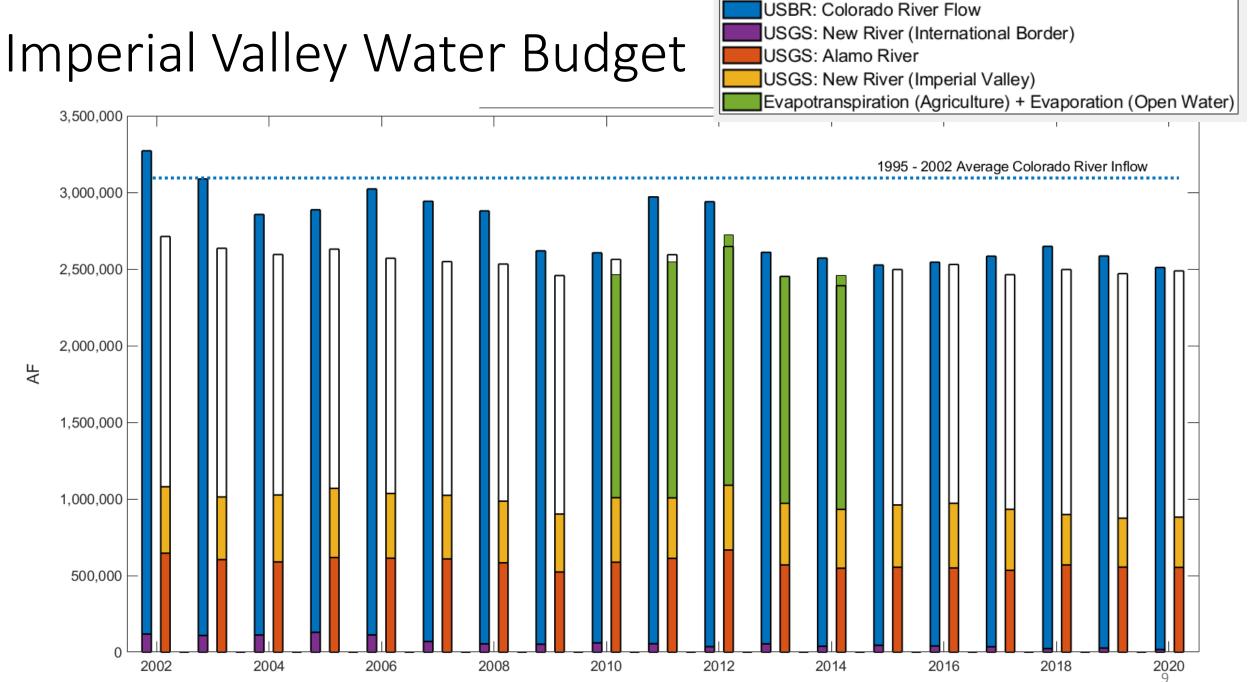
(SOURCE: USBR, IID)

Imperial Valley <u>Gaged</u> Annual Flows to Salton Sea Without Mexico Flows

New River Flows from Mexico at International Border, AF



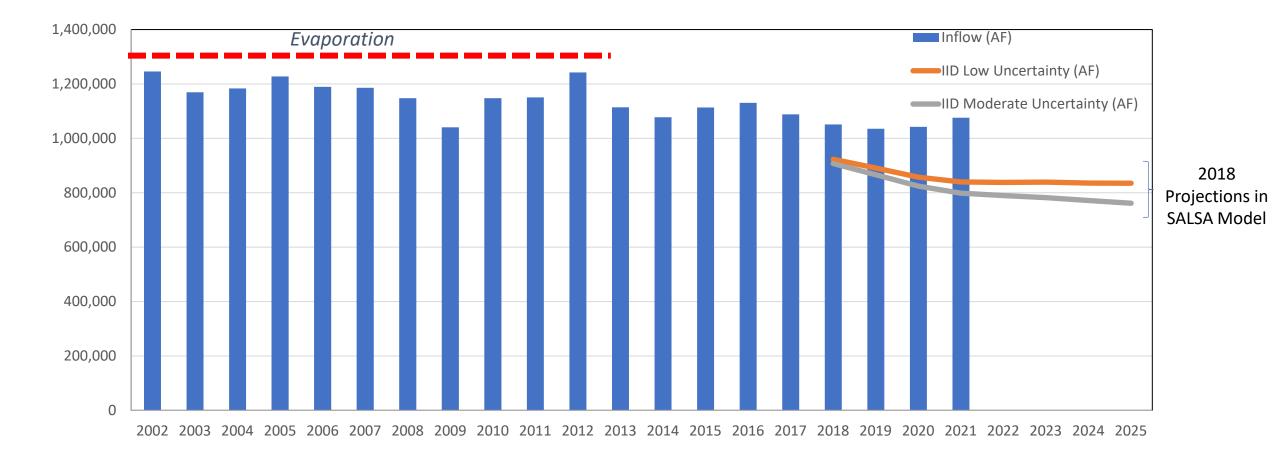
IID: Evapotranspiration


СҮ	Net Irrigated Area (Reported by IID)	Acres (Agriculture + Open Water) (Reported by USBR)	Total ET [AF] (Reported by USBR)
2010	431,823	490,150	1,456,100
2011	440,650	536,290	1,541,549
2012	432,555	575,480	1,631,700
2013	411,195	488,130	1,481,400
2014	405,246	491,290	1,528,600

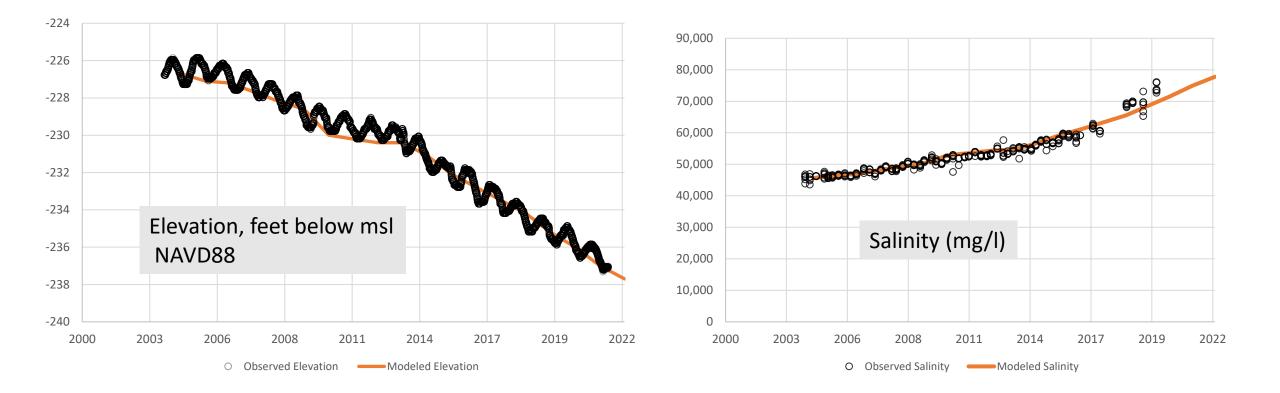
Net ET Rate

= Total ET / Net Irrigated Area= 3.601 AF/acre

(SOURCE: USBR ET and Crop Acreage Reports)


⁽SOURCE: USGS, USBR ET and Crop Acreage Reports, IID Crop Reports)

Inflows to the Salton Sea, 2015-2021


Gaged flow to Salton Sea from New and Alamo Rivers:	890,000 AF
Ungaged Flows (adding 9%):	80,000 AF
Total Imperial Valley Flows:	970,000 AF
Other Inflows	
Whitewater River Flow:	46,942 AF
Coachella Valley Ungaged Flow (40% of gaged flows):	18,777 AF
Local Watershed Flow:	10,000 AF
Groundwater Flow:	2,470 AF

Total Inflows: 1,068,290 AF

Total Inflows to the Salton Sea

Salton Sea Accounting Model (SSAM) to Model Recent Inflow, Salinity and Elevation Data

Assumptions for Future Scenarios, Imperial Valley

ET rate baseline at 3.60 AF/acres (average over 2010 – 2014)

Net Irrigated Land constant at 433,540 acres (average over 2002 – 2021)

Scenario #1: Continued baseline

<u>Scenario #2:</u> Climate change and higher evapotranspiration, transition from current flows by 2040

<u>Scenario #3:</u> Periodic Drought (70% normal, 20% moderate, 10% severe drought curtailment) + Climate Change

- (i.e. full 350,000 AF decrease in CA allocation results in proportional decrease in IID allocation)

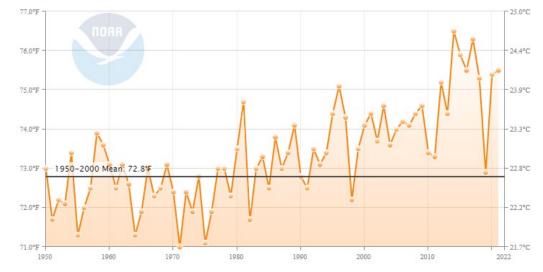
Scenario #4: IID Low Uncertainty Scenario, transition from current flows by 2040

Scenario #5: IID Moderate Uncertainty Scenario, transition from current flows by 2040

Scenario #2, Climate Change, Mid 21st Century, Imperial Valley

Current Colorado River inflows = 2,535,000 AF/year (average over 2015 – 2020)

Climate-Adjusted Evapotranspiration rate = 3.78 AF/acre


(5% greater than current value of 3.6 AF/acre)

- Evapotranspiration loss = 3.78 x 433,540 = 1,638,780 AF

Estimated outflow: 898,620 AF

Transition from current flows to climate-adjusted flows occurs between 2021 and 2040

Source: NOAA, NCDC

Scenario #3, Periodic Drought Curtailment and Climate Change, Mid 21st Century, Imperial Valley

Hydrology:

70% normal, 20% moderate, 10% severe drought curtailment

Moderate drought:

Colorado River inflows to IID decrease by 4.55%

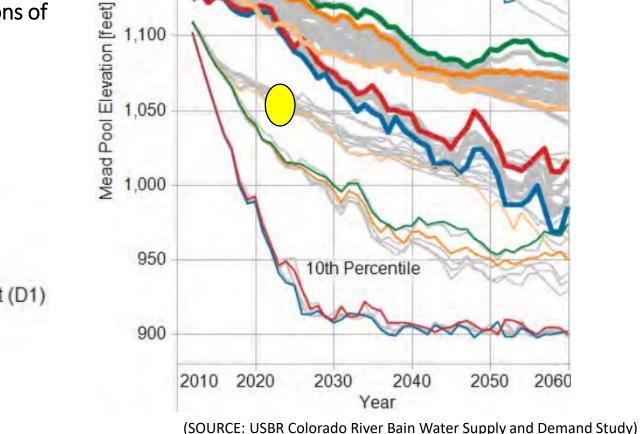
Severe drought:

Colorado River inflows to IID decrease by 7.95%

Average flow from 2040 is a weighted average of the three flow conditions: 855,350 AF/year Transition from current conditions in 2021 to 2040

Potential Inflow Scenarios (Acre Feet)

Number	Summary	Imperial Valley Flow (River and Drains)	Whitewater Flow	Mexico Flows	Whitewater Drain Flow	Local Watershed	Groundwater	Total
Scenario 1	Continued Baseline	970,100	46,942	20,000	18,777	10,000	2,470	1,068,290
Scenario 2 (uniform transition from 2022 to 2040)	Climate Change	898,620	46,942	-	18,777	10,000	2,470	976,809
Scenario 3 (uniform transition from 2022 to 2040)	Periodic Drought (70% normal, 20% moderate, 10% severe drought curtailment)	855,350	46,942	-	18,777	10,000	2,470	933,539
Scenario 4 (uniform transition from 2022 to 2040)	IID Low Uncertainty (2025-2077 average)	694,000	72,874	48,640	29,150	10,000	10,000	864,664
Scenario 5 (uniform transition from 2022 to 2040)	IID Moderate Uncertainty (2025-2077 average)	576,000	48,404	38,000	19,362	10,000	10,000	701,766


Decadal Projections Of Lake Mead Elevation Under Climate Scenarios

1.200

1,150

Colorado River Simulation System (CRSS) long-term output

- Input data = monthly natural inflows, evaporation rates for each reservoir, initial reservoir conditions on Jan 1, 2012
- Assumptions = shortage, surplus, and coordinated operations of the 2007 Interim Guidelines are extended past 2026
- Various supply & demand scenarios (see next slide)

50th Percentile

Highlighted Scenario Names

- Paleo Conditioned, Enhanced Environment (D1)
- Paleo Conditioned, Current Projected (A)
- Observed Resampled, Rapid Growth (C1)
- Downscaled GCM Projected, Enhanced Environment (D1)
- Downscaled GCM Projected, Rapid Growth (C1)
- All Other Scenarios

Summary

- Recent observed data suggest higher inflows to the Sea than projected about 5 years ago; we can use these data to relate flow, salinity and elevation at the Sea
- The key drivers of change are projected to be: Imperial Valley flows to Salton Sea, Mexico flows, and climate change impacts to evapotranspiration
- SSMP habitat projects (~15,000 acres planned in Phase 1) are expected to consume 90,000 AF annually
- New water demands, related to geothermal and lithium development, are expected to be an additional draw on inflows to the Sea
- Shorter periods of low flow, related to drought conditions, may be an additional concern besides long-term average flows
- More extreme climate impacts to Lake Mead elevations are possible in the 21st century, with significant impacts on Imperial Valley deliveries

Questions?

Sujoy B. Roy, Ph.D.

Principal Engineer

Tetra Tech Inc.

Email: sujoy.roy@tetratech.com